Statistical methods and Bayesian interpretation of evidence in forensic automatic speaker recognition
نویسندگان
چکیده
The goal of this paper is to establish a robust methodology for forensic automatic speaker recognition (FASR) based on sound statistical and probabilistic methods, and validated using databases recorded in real-life conditions. The interpretation of recorded speech as evidence in the forensic context presents particular challenges. The means proposed for dealing with them is through Bayesian inference and corpus based methodology. A probabilistic model – the odds form of Bayes’ theorem and likelihood ratio – seems to be an adequate tool for assisting forensic experts in the speaker recognition domain to interpret this evidence. In forensic speaker recognition, statistical modelling techniques are based on the distribution of various features pertaining to the suspect's speech and its comparison to the distribution of the same features in a reference population with respect to the questioned recording. In this paper, the state-of-the-art automatic, text-independent speaker recognition system, using Gaussian mixture model (GMM), is adapted to the Bayesian interpretation (BI) framework to estimate the within-source variability of the suspected speaker and the between-sources variability, given the questioned recording. This doublestatistical approach (BI-GMM) gives an adequate solution for the interpretation of the recorded speech as evidence in the judicial process.
منابع مشابه
Forensic speaker recognition based on a Bayesian framework and Gaussian mixture modelling (GMM)
The goal of this paper is to establish a scientifically founded methodology for forensic automatic speaker recognition. The interpretation of recorded speech as evidence in the forensic context presents particular challenges. The means proposed in the paper for dealing with them is through Bayesian inference. This leads to the formulation of a likelihood ratio measure of evidence which weighs t...
متن کاملForensic Automatic Speaker Recognition Using Bayesian Interpretation and Statistical Compensation for Mismatched Conditions
Nowadays, state-of-the-art automatic speaker recognition systems show very good performance in discriminating between voices of speakers under controlled recording conditions. However, the conditions in which recordings are made in investigative activities (e.g., anonymous calls and wire-tapping) cannot be controlled and pose a challenge to automatic speaker recognition. Differences in the phon...
متن کاملAutomatic Speaker Recognition for Forensic Case Assessment and Interpretation
Abstract Forensic speaker recognition (FSR) is the process of determining if a specific individual (suspected speaker) is the source of a questioned voice recording (trace). The forensic expert’s role is to testify to the worth of the voice evidence by using, if possible, a quantitative measure of this worth. It is up to the judge and/ or the jury to use this information as an aid to their deli...
متن کاملOn compensation of mismatched recording conditions in the Bayesian approach for forensic automatic speaker recognition.
This paper deals with a procedure to compensate for mismatched recording conditions in forensic speaker recognition, using a statistical score normalization. Bayesian interpretation of the evidence in forensic automatic speaker recognition depends on three sets of recordings in order to perform forensic casework: reference (R) and control (C) recordings of the suspect, and a potential populatio...
متن کاملA Bayesian network approach combining pitch and spectral envelope features to reduce channel mismatch in speaker verification and forensic speaker recognition
The aim of this paper is to reduce the effect of mismatch in recording conditions due to the transmission channel and recording device, using conditional dependencies of prosodic and spectral envelope features. The developed system is based on a Bayesian network framework which combines statistical models of the pitch and spectral envelope features. This approach is applied to forensic automati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003